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Abstract
An essential part of the description of a reconstructive phase transition consists
in the determination of the so-called transition path, which defines the possible
atomic displacements and lattice strains that occur during the transformation.
We present a systematic procedure for the determination of possible transition
paths in phase transitions with no group–subgroup relation between their
phases. It is assumed that the transformation involves, at least locally, an
intermediate state described by a common subgroup of the symmetry groups
of the two end phases. The possible mappings between the end structures
are restricted by symmetry constraints following from the occupied atomic
orbits, and tolerances for lattice strains and atomic displacements. The concept
of maximal symmetry transition paths is used for the classification of the
different symmetry allowed transition paths. The application of the procedure
is illustrated by the determination of maximal symmetry transition paths for the
transformations from wurtzite to rocksalt, zincblende to rocksalt and rocksalt to
caesium chloride structure types.

The prediction and characterization of the atomistic mechanisms that govern first order phase
transitions with no group–subgroup relation between their phases has become of great interest
in the last few years, in particular from the viewpoint of the possibilities now offered by the
DFT ab initio methods. Typical subjects of these studies are the so-called reconstructive
phase transitions, which constitute the most widespread type of structural phase transitions
in nature. Reconstructive phase transitions may lead to huge reorganizations of the atomic
positions with a change, in general, in the coordination numbers of the atoms. Another
example of transitions with no group–subgroup relation between their phases, but not implying
large atomic reorganizations, is given by the transformations between ferroelectric phases
with different orientations of the polarization which are driven either by temperature or field.
Reconstructive phase transitions and in general, first order phase transitions in crystals are
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in principle governed by nucleation processes, but this is not in contradiction with the fact
that on a local basis these transformations may involve diffusionless cooperative displacements
of the atoms, which result in transient intermediate local configurations that can be given an
approximate crystalline character. Molecular dynamical simulations have indeed evidenced
these transient intermediate configurations on the interfaces separating the two phases [1].
Making abstraction of this property, one can consider these transient configurations as a
homogeneous crystalline state that links in a continuous form the two end phases with higher
symmetries. We can talk then of a transition path. A transition path can be defined as the set of
atomic displacements and lattice strains that can make the system transit in a continuous way
from one phase to the other. In the simplest case, one assumes that a minimal set of symmetry
breaks or gains takes place during the transformation, so that the intermediate state has the same
symmetry all along the transformation, and is given by a common subgroup of the space groups
of the two end phases. This intermediate state defines a possible trajectory or transition path in
the configuration space of the system that continuously maps the two end phases. A transition
path specifies the atomic displacements and lattice strains that are supposed to take place at a
local level during the transformation. In general, for two given phases, the number of possible
transition paths is infinite, because the number of common subgroups is infinite. To limit the
problem and restrict it to the most probable mechanisms, one can limit the cell multiplication
of the intermediate subgroup. For a given cell multiplication, it is possible to obtain a finite set
of common subgroups.

A symmetry analysis cannot predict the energetically most favourable transition path.
This would require to explore the energy landscape and, in particular, the energy barriers that
separate two stable phases, establishing the most favourable transition paths in the configuration
space [2, 3]. However, a complete exploration of the configuration space is not possible, and
it is necessary to make a previous selection of the most favourable subspaces. The symmetry
criteria are essential for a logical [4] and systematic selection of these subspaces [5]. The
knowledge of the most favourable transition paths is also of considerable interest for some
particular applications. For example, the comprehension of the symmetry relations between
the two stable phases may result in simple phenomenological models that permit to determine
the topology of its phase diagram [6]. In addition, the transition path determines the relative
orientation of the two phases and their eventual domain structure. And finally, in some cases the
different intermediate states are candidates for new stable phases, particularly at high pressure,
in the same or analogous systems [7].

One of the first attempts for the description of reconstructive phase transitions, in terms
of an initial limited break of symmetry and a later symmetry gain, is given by Cahn [8] in
the study of the fcc → bcc transformation in Fe. Later, Dmitriev and Toledano [6] developed
a modified Landau formalism based on the definition of an order parameter periodical with
the displacements, that has been successfully applied to the study of considerable transitions.
The method for the determination of possible transition paths used by Sowa combines
symmetry considerations and geometrical models based on deformation of heterogeneous
sphere packings (see e.g. [9]). Stokes and Hatch have applied an approach based on symmetry
and structural criteria combined with energetical calculations to several cases, among them, the
transformations between CsCl and NaCl [10], or zincblende to NaCl [11] structure types.

In the following sections, we present a method for a systematic determination of possible
transition paths in terms of (i) their symmetry relations, which include the analysis of
the group–subgroup relations and the splittings of the occupied Wyckoff positions in the
common subgroup, and (ii) the structural conditions related to tolerable values for the lattice
strains and atomic displacements. A useful classification scheme for the symmetry possible
transition paths is achieved by introducing the concept of maximal symmetry transition paths.
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The application of the procedure is illustrated by several examples of reconstructive phase
transitions: the transformations between wurtzite and rocksalt, zincblende and rocksalt, and
rocksalt and CsCl-structure types.

1. Symmetry conditions on transitions paths

Consider two crystalline structures S1 and S2 with space group symmetries G1 and G2, which
are not group–subgroup related. The structures are described by the lattice parameters, the
positions of the atoms, and the number of formula units Z1 and Z2 per conventional unit cell.
A transformation between the two structures can then be described as a three-step process,
starting with an initial limited symmetry break G1 → H1, with H1 � H, where a hypothetical
sublattice of the initial lattice is obtained with exactly the same lattice parameters or a multiple
of them, and having lost some symmetry operations of G1. Next, the lattice of the subgroup H1

is distorted by an affine transformation without an additional change of symmetry H1 → H2,
with H1 � H2, accompanied by atomic displacements that are compatible with the common
subgroup symmetry. Finally, a symmetry gain H2 → G2 takes place, where new symmetry
operations not belonging to G1 appear. The three-step factorization of the symmetry change
G1 → G2 allows the application of symmetry restrictions to the group–subgroup pairs G1 > H1

and G2 > H2, and quantitative structural criteria for the change H1 → H2. Note that a
full description of a transition path requires not only the definition of the pair of subgroups
(H1,H2), but also the identification of atomic displacements that link pairwise the atomic
positions in both phases.

1.1. Indices of a common subgroup of two space groups

The symmetry reductions H1 < G1 and H2 < G2 are characterized by the indices i1 = |G1|/|H|
and i2 = |G2|/|H|. According to Hermann’s theorem [12], these indices of H in G1 and G2 can
be uniquely factorized into translationengleiche and klassengleiche parts:

iq = i t
q · i k

q where i t
q = |Pq |

|PH| for q = 1, 2 (1)

being Pq and PH the point groups of the space groups Gq and H. The indices i t
q are related

to the reduction of the point group symmetry during the symmetry break Gq → Hq , and i k
q

corresponds to the multiplication of the primitive unit cell in the subgroup. It is obvious that
the number of formula units per primitive unit cell for the structures S1 and S2 must be the
same when described in their subgroups H1 and H2. This is forced by the assumed continuous
transformation within the space group type H linking the two structures. This means that
Z1 · i k

1/ f1 = Z2 · i k
2/ f2, where f1 and f2, are the corresponding centring factors1. Taking into

account equation (1) this implies the following relation between the indices i1 and i2 of the two
group–subgroup branches G1 > H1 and G2 > H2:

i2 = i1 · Z1

Z2
· |P2|
|P1| · f2

f1
. (2)

1.2. Common subgroups of two space groups

Once the common subgroup types and the corresponding indices are obtained, the next step
in the symmetry analysis of the possible transition paths for the change G1 → G2 consists

1 The centring factor for a P-lattice is equal to 1, for I -, A-, B- or C-lattices is 2, for a R-lattice is 3, and for a F-lattice
is equal to 4.
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in the calculation of the subgroups for the two group–subgroup branches, the sets {H1,r , r =
1, . . . , n} with index i1 in G1, and {H2,s, s = 1, . . . , m}, with index i2 in G2. The set of possible
subgroups H1,r and H2,s are distributed in classes of conjugated subgroups with respect to G1

and G2, respectively. The subgroup Hq,k with q = 1, 2 is specified by a matrix-column pair
(P ,p)q,k which determines the transformation between the conventional bases of Gq and Hq,k .
Each of the n · m pairs (H1,r ,H2,s) and the corresponding transformation matrices, defines a
possible symmetry for the transition path between G1 and G2.

It is important to take into consideration:

(i) In our treatment we specify Hq,k by the transformation matrix (P ,p)q,k . However, one
should note that the choice of (P ,p)q,k is not unique: its arbitrariness is determined by
the normalizer of H. In other words, two transformation matrices which differ by a matrix
belonging to the normalizer of H correspond to the same subgroup, i.e. the same subset
of elements of Gq , and therefore define transition paths that are not distinguishable from
purely symmetry criteria.

(ii) It is expected that physically distinguishable paths would result for subgroups that
belong to different conjugacy classes with respect to G1, and with respect to G2.
Different conjugacy classes of subgroups describe different low symmetry structures,
while subgroups belonging to the same conjugacy class are related to different physically
equivalent domain states.

1.3. Wyckoff position matching rule

During a symmetry break G → H, atoms that are symmetrically equivalent under G, i.e. belong
to the same orbit, may become non-equivalent under H (the orbit splits) and/or their site
symmetry is reduced. This behaviour is the same for all orbits belonging to a Wyckoff position,
and it is known as Wyckoff position splitting [13, 14].

Consider the two experimentally observed structures S1 and S2 which are specified by
the coordinates of the occupied atomic orbits. Further restrictions on the possible transition
paths for the transformation G1 → G2 are due to the matching of the Wyckoff position splitting
schemes for the group–subgroup pairs G1 > H1 and G2 > H2 as stressed on [15]: it is necessary
by continuity2 that the occupied orbits in H1 for a given atom type in S1 coincide with the
occupied orbits in H2 of the same atom type in S2.

To apply this Wyckoff position matching condition it is necessary to take into account
the fact that different Wyckoff positions of a space group may permute under isomorphic
mappings of the space group onto itself, i.e. under the normalizer of the group. This could
lead to some fictitious non-matching between the Wyckoff position splitting schemes due to the
arbitrariness of the transformation matrix. In order to overcome this difficulty, the requirement
for the strict coincidence of the Wyckoff position splitting schemes should be relaxed to include
the matching of the splitting schemes up to Wyckoff positions belonging to the same Wyckoff
set.3

1.4. Maximal symmetry transition paths

From the above discussion, the symmetry conditions for a transition path can be summarized
as follows:

2 No order–disorder mechanisms are envisaged.
3 The sets of all those Wyckoff positions of a space group that are permuted under the normalizer of the group form
the so-called Wyckoff sets. Tables of the Wyckoff sets for all space groups are published in [16].
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(i) The intermediate state in a transition path is characterized by a pair of common isomorphic
subgroups (H1,H2) such that G1 > H1 and G2 > H2 with indices i1 and i2 which should
be related by equation (2).

(ii) The occupied Wyckoff positions in H1 and H2 for each atom type should be the same or
equivalent under the normalizer N (H).

Let us note that a pair of subgroups (K1,K2) of (H1,H2), such that K1 < H1 < G1

and K2 < H2 < G2 fulfils automatically these symmetry conditions if they are satisfied by
H1 and H2. The use of symmetry criteria cannot predict the most favourable transition path
from an energetical viewpoint. But it allows to classify the possible paths, and to hierarchize
them. Those of greater symmetry will be in general more probable. The free energy is always
extremal (minimal or maximal) with respect to a symmetry break. As the energy maps are
usually smooth, in many cases the valleys of the energy correspond to configurations of greater
symmetry, where the minimum is being forced by symmetry. For that reason it is important to
introduce the concept of transition paths of maximal symmetry. We say that a transition path
(H1,H2) has maximal symmetry if there exists no pair of intermediate subgroups (Z1,Z2),
such that Hi < Zi < Gi with i = 1, 2, which also satisfies the symmetry conditions listed
above. The concept of maximal symmetry transition paths can also be generalized to include
in addition, the specific atomic displacements that are involved in the path description. Strictly
speaking, a transition path would be of maximal symmetry if the atomic displacements involved
in the path cannot take place in a symmetry higher than the one being considered. In other
words, a path (H1,H2) would still be of maximal symmetry even in the case of the existence
of a pair of intermediate subgroups (Z1,Z2) fulfilling the symmetry conditions, if the atom
trajectories or the lattice strains involved in the path within the symmetries (H1,H2) are not
compatible with the symmetries (Z1,Z2). For a given set of atomic displacements linking the
two end phases we expect as the most favourable trajectories those with the maximal symmetry
compatible with their endpoints, and in this sense paths with very low symmetry can be of
maximal symmetry in this general sense. This is for instance the case of the mechanism with
symmetry P21/m for the transformation between structure types NaCl (B1) and CsCl (B2)
proposed by Stokes and Hatch [5], or the path of symmetry P2 proposed by Catti [17] for
the transformation from structure types NaCl to anti-litharge in AgCl. However, most of the
transition paths described or proposed in literature are in fact of maximal symmetry in the more
restrictive sense represented by the first definition given above. In the following, we will only
consider and use the term transition paths of maximal symmetry according to this restrictive
definition.

The maximal symmetry transition paths, specified by the subgroups (H1,H2) of highest
symmetry, describe families of possible paths characterized by subgroups (K1,K2), with
Ki < Hi < Gi and i = 1, 2. They allow to classify the different possibilities for relating
two structures, and by definition, every physically possible transition path must be among the
set of maximal symmetry transition paths or within one of their corresponding families.

It is important to notice that the space group type of the common subgroup and the indices
in G1 and G2 are not sufficient to determine if the pair (H1,H2) defines a transition path
of maximal symmetry. Consider for instance the Cmc21 and Pna21 transition paths in the
transformation between wurtzite and NaCl structure types (see figure 1). In the case of the
Cmc21 path there are three subgroups of type Cmc21 distributed in one class of conjugate
subgroups in the hexagonal branch, and 6 subgroups of type Cmc21 distributed in one class
of conjugate subgroups in the cubic branch. The Wyckoff splitting scheme is the same for
all the subgroups in any class. The analysis of the group–subgroup graph of Cmc21 indicates
that there are no intermediate subgroup that satisfies the symmetry conditions, and so, Cmc21
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Figure 1. Symmetry relations for the wurtzite to NaCl transformation via intermediate subgroups
Cmc21 and Pna21. Both Cmc21 subgroups, and Pna21 subgroups of Fm3̄m that are not
subgroups of Cmc21, correspond to maximal symmetry transition paths.

defines a maximal symmetry transition path. In the case of the Pna21 path, the situation is
somehow different. In the hexagonal branch, there are three Pna21 subgroups in one single
class fulfilling P63mc > Cmc21 > Pna21. In the cubic branch, there exists 42 subgroups
distributed in four classes. One of these Pna21 classes correspond to the subgroup of Cmc21,
while the subgroups of the other three classes are not subgroups of Cmc21. The combinations
of the three Pna21 classes of the cubic branch with the Pna21 representative of the hexagonal
branch result in three additional distinct Pna21 transition paths of maximal symmetry.

2. Structural conditions on transition paths

Once a set of maximal symmetry transition paths have been determined for a certain symmetry
change, as given by pairs of transformation matrices (P ,p)1 and (P ,p)2 for G1 → H1 and
G2 → H2, the application of some structural conditions can help to assess their plausibility
as physically relevant transition paths for a particular material. These additional structural
conditions would in general constrain further the transformation matrices which define the
lattice strain and the possible atomic displacements linking the two end phases.

It is reasonable to think that transformations with smaller atomic displacements and lattice
strains are in general favoured with respect to other transformations which involve bigger
changes. This general qualitative criterion can be translated into quantitative parameters
(tolerances) or figures of merit that can be used to discard some possible paths and to classify
the remaining ones. Note that, in contrast to the symmetry conditions, these additional
structural conditions have to be applied separately to each particular compound and requires
specific structural data of the two end phases.
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We have considered two structural criteria: the magnitude of deformation of the lattice and
the maximal atomic displacement that occur during the affine transformation H1 → H2. The
first one, restricts the arbitrariness of the rotational parts of the transformation matrices (P ,p)1

and (P ,p)2.

2.1. Deformation of the lattice

The assessment of the lattice strain involved in a transition path has been done in two steps.
First, the mapping of the lattices of H1 and H2 has been optimized to minimize the magnitude
of this strain, as measured by the so-called metric distance [18]. Using the freedom in the
choice of the transformation matrices (P ,p)1 and (P ,p)2, given by the Euclidean normalizer
NE (H), the pair of unit cells that gives the smallest deformation is selected. In a second step, a
more detailed evaluation of this optimized path strain is done calculating the finite Lagrangian
strain tensor. A derived scalar quantity [19], is then used as a measure of the magnitude of this
strain.

The metric distance d is defined as follows: the metric tensor G for a unit cell a, b, c can
be represented as a point h in a six-dimensional space [18]:

h =

⎛
⎜⎜⎜⎜⎜⎝

a · a
b · b
c · c

2b · c
2a · c
2a · b

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

a2

b2

c2

2bc cos(α)

2ac cos(β)

2ab cos(γ )

⎞
⎟⎟⎟⎟⎟⎠

. (3)

The metric distance d between two unit cells is then defined as the distance between the
corresponding two points in this six-dimensional space, and is a rough measure of the
magnitude of the strain relating both cells. The finite Lagrangian strain tensor η used in the
second step can be calculated in a Cartesian reference system as [20, 21]

η = 1
2 (e + eT + eTe) = 1

2 ((R−1
1 )TG2 R−1

1 − I ) (4)

where e = R2 R−1
1 − I , G2 is the metric tensor for the lattice parameters of H2, and I is

the identity matrix. The standard root tensors Ri provide the coordinate transformations from
the conventional bases of the two unit cells to the Cartesian one. Following Schmahl [19], a
convenient parameter for a quantitative evaluation of the degree of deformation of a lattice is
given by:

S = 1
3

√√√√ 3∑
i=1

η2
i (5)

where ηi are the eigenvalues of the finite Lagrangian strain tensor. In our analysis, transition
paths characterized by a parameter S that exceeds a certain tolerance value Stol are discarded.

2.2. Atomic mappings

The second structural criterion refers to the evaluation of the atomic displacements involved
in the transformation mechanism. The atomic positions of the two structures are represented
in the basis of the common subgroup and the variable parameters in the Wyckoff position
description indicate the relevant structural parameters (internal degrees of freedom) for the
transformation. In general, there exist more than one possibility to pair the atoms between the
two structures for a given common subgroup. The path is not fully defined until this atom-to-
atom mapping between the two end phases is introduced. We have considered as the most
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favourable mapping the one that minimizes the maximal atomic displacement required for
the transformation. These estimated displacements are only qualitative, as they are calculated
without taking into account the accompanying lattice strain. In addition, a tolerance value �tol

is introduced, so that transition paths with this minimized maximal distance, �max > �tol are
discarded.

With the above mentioned parameters estimating the lattice deformation and the atomic
displacements, it is possible to classify the different mechanisms assessing their relevance.
Smaller values for the strain and the atomic displacements would indicate a competitive
mechanism.

3. Application to some reconstructive phase transitions

The above described procedure for the determination of possible transition paths of maximal
symmetry have been implemented in a computer program [22], using the databases and tools
provided by the Bilbao Crystallographic Server [23]. In the following we present the results
of its application on three different types of reconstructive phase transitions, namely, the
transformations between the following structure types: wurtzite to NaCl, zincblende to NaCl,
and CsCl to NaCl. The assessment of the plausibility of the obtained transitions paths and
the application of the tolerance limits have been necessarily done in each case for a specific
material. However, one expects that for the three types of reconstructive transitions that
have been studied the tolerance values are sufficiently large to include all paths that may be
competitive in any material.

3.1. Wurtzite (B4) to NaCl (B1) transformation in GaN

Most of the compounds with AB stoichiometry, as for example, II–VI and III–V
semiconductors with atoms in coordination 4, crystallize at normal conditions in zincblende or
wurtzite structure types. One of the stable phases at high pressure is the cubic NaCl structure
type, with atoms in coordination 6. In some compounds, the high pressure phase NaCl is
preceded by other modifications, but there exist numerous examples of direct transformations
from wurtzite to NaCl structure types [24]. Some examples of such transformations are given
in materials with high technological applications as type III nitrides, AlN, GaN and InN, or the
compounds of ZnO and CdSe. The structure of wurtzite crystallizes in the hexagonal space
group P63mc (186) where A and B atoms occupy Wyckoff positions 2b( 1

3 , 2
3 , z) with zA = 0

and zB � 3
8 . In the case of the NaCl structure type, the crystal symmetry is given by the cubic

space group Fm3̄m(225) with atoms in Wyckoff positions 4a(0, 0, 0) and 4b( 1
2 , 1

2 , 1
2 ).

This transformation has been the object of many experimental and theoretical studies.
Limpijumnong and Lambrecht [25] proposed a homogeneous orthorhombic deformation in
GaN and MgO, without defining unambiguously the corresponding transition path. Sowa [26]
described the transition as a deformation of a heterogeneous sphere packing via an intermediate
phase with Cmc21(36) symmetry. The transition path obtained by Sowa was later identified
by Perez-Mato et al [27] as being of maximal symmetry. By molecular dynamics techniques
and DFT calculations, Shimojo [28] obtained two new transition paths, but unfortunately with
insufficient information for the complete specification of the intermediate states. Sowa [29]
completed one of the proposals of Shimojo, providing the complete crystallographic description
of the mechanism by means of Pna21(33) symmetry.

The application of the procedure for the determination of maximal symmetry transition
paths for the transformation from wurtzite to NaCl structure types for a maximum k-index of
4, results in 44 possible symmetries (see table 1). The atomic displacements and lattice strains

8
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Table 1. Maximal symmetry transition paths for the transformation between wurtzite (B4) and
NaCl (B1) structure types with a maximum k-index equal to 4. In the table, the common subgroups
and their corresponding indices are given. In the last column, the number of transitions paths within
the corresponding space group symmetry is specified. The total number of possible transition
paths (44 distinct paths from the symmetry viewpoint) is drastically reduced when the structural
conditions are applied for a specific material (see tables 2 and 3).

H ZH i1 ik
1 i2 ik

2 No.

(036) Cmc21 4 3 1 24 2 1
(033) Pna21 4 6 2 48 4 3
(031) Pmn21 4 6 2 48 4 3
(026) Pmc21 4 6 2 48 4 3
(009) Cc 4 6 1 48 2 1
(008) Cm 4 6 1 48 2 1
(004) P21 2 6 1 48 2 1
(009) Cc 8 12 2 96 4 8
(008) Cm 8 12 2 96 4 4
(007) Pc 4 12 2 96 4 15
(006) Pm 4 12 2 96 4 2
(004) P21 4 12 2 96 4 2

Table 2. Maximal symmetry transition paths for the wurtzite (B4) to NaCl (B1) transformation
in GaN, for a maximum k-index equal to 4, maximum allowed strain Stol = 0.15 and maximum
atomic displacement �tol = 2 Å. The space group type of the common subgroup H, the number
of formula units per conventional unit cell, ZH, and the indices i1 e i2 of the two group–subgroup
branches G1 > H1 and G2 > H2 are specified. In the last column, the transformation matrices
(P , p)1 and (P , p)2, that relate the bases of the space groups of the stable phase with subgroups
H1 and H2 are shown. The monoclinic axis is along b for the monoclinic space group Pc (paths
numbers 5–8).

No. H ZH i Transformation matrices (P , p)

1 (036) Cmc21 4
3 −a − b, a − b, c

24 −a − 1
2 ,−b − 1

4 , c

2 (033) Pna21 4
6 −a + b,−a − b, c

48 a − b + 1
4 , 1

2 a + 1
2 b − 1

2 ,−c

3 (031) Pmn21 4
6 −a − b + 1

4 , a − b − 1
4 , c

48 1
2 a − 1

2 c + 1
8 ,−a − c,−b + 1

8

4 (026) Pmc21 4
6 −a − b, a − b, c

48 − 1
2 a + 1

2 b, c, a + b

5 (008) Cm 4
6 −a + b,−a − b, c

48 − 1
2 a + b + 1

2 c, 1
2 a + 1

2 c, 1
2 a + b − 1

2 c

6 (007) Pc 4
12 −2a − b − c, b + 1

4 , 2a + b
96 − 1

2 a − b + 1
2 c,− 1

2 a − 1
2 c, a − c

7 (007) Pc 4
12 −2a − b − c, b + 1

4 , 2a + b
96 −2b + 3

8 , 1
2 a + 1

2 c,− 1
2 a + b + 1

2 c + 3
8

8 (007) Pc 4
12 −2a − b − c, b + 1

4 , 2a + b
96 −a + b − c,− 1

2 b − 1
2 c,−b + c

used have been of the structures of GaN. The experimental lattice parameters are a = 3.1901 Å
and c = 5.189 Å for the wurtzite (hexagonal) [30] structure type and a = 4.006 Å for the NaCl
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Table 3. Atomic coordinates, atomic mappings, lattice strain S and maximum distance �max of
the maximal symmetry transition paths for the wurtzite (B4) to NaCl (B1) transformation in GaN,
for a maximum k-index equal to 4, maximum allowed strain Stol = 0.15 and maximum atomic
displacement �tol = 2 Å. The internal degrees of freedom are written in bold.

No. H S �max (Å) AT WP Coord. in S1 Coord. in S2

1 (036) Cmc21 0.1415 0.7954
Ga 4a 0 1

3 0 0 1
4 0

N 4a 0 1
3

3
8 0 1

4
1
2

2 (033) Pna21 0.0765 1.0534
Ga 4a 1

6
1
2 0 1

8
1
4 0

N 4a 1
6

1
2

3
8

1
8

1
4

1
2

3 (031) Pmn21 0.0765 1.7372

Ga1 2a 0 1
12 0 0 1

8 0

Ga2 2a 0 3
12

1
2 0 5

8 0

N1 2a 0 1
12

3
8 0 1

8
1
2

N2 2a 0 3
12

7
8 0 5

8
1
2

4 (026) Pmc21 0.0923 1.9526

Ga1 2a 0 1
3 0 0 0 0

Ga2 2b 1
2

5
6 0 1

2
1
2

1
4

N1 2a 0 1
3

3
8 0 1

2
1
2

N2 2b 1
2

5
6

3
8

1
2 0 1

4

5 (008) Cm 0.1446 1.8417

Ga1 2a 1
6

1
2 0 1

2
1
2 0

Ga2 2a 5
6

1
2

1
2

1
2

1
2

1
2

N1 2a 1
6

1
2

3
8 0 1

2
1
4

N2 2a 5
6

1
2

7
8 0 1

2
3
4

6 (007) Pc 0.1379 1.2182

Ga1 2a 0 1
4

1
6 0 0 0

Ga2 2a 1
2

1
4

1
3

1
2

1
2

1
2

N1 2a 5
8

1
4 0.7916 1

2 0 3
4

N2 2a 1
8

1
4 0.9583 0 1

2
3
4

7 (007) Pc 0.0846 1.8417

Ga1 2a 0 1
4

1
6 0 1

4 0

Ga2 2a 1
2

1
4

1
3

1
2

1
4 0

N1 2a 5
8

1
4 0.7916 3

4
1
4 0

N2 2a 1
8

1
4 0.9583 1

4
1
4 0

8 (007) Pc 0.0765 1.3801

Ga1 2a 0 1
4

1
6 0 0 0

Ga2 2a 1
2

1
4

1
3

1
2

1
2

1
4

N1 2a 5
8

1
4 0.7916 1

2 0 1
2

N2 2a 1
8

1
4 0.9583 0 1

2
3
4

(cubic) [31] structure type. Considering Stol < 0.15 and �tol < 2 Å, we reduce the 44 possible
maximal transition paths to eight transition paths with different orthorhombic and monoclinic
symmetries (tables 2 and 3). In table 2, the transformation matrices (P ,p)1 and (P ,p)2, that
relate the symmetry groups G1 = P63mc(186) and G2 = Fm3̄m(225) with the intermediate
common subgroups H, are specified. Also, the indices of the corresponding group–subgroup
branches i1 and i2, and the number of formula units per conventional unit cell ZH are given.
With the help of these transformations the unit cells of the structures in the subgroup basis are
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Table 4. Maximal symmetry transition paths for the zincblende (B3) to NaCl (B1) transformation,
for a maximum k-index equal to 3. The maximal common subgroups, their corresponding indices
and transformation matrices are specified in the table. The transformation matrices have been
optimized, when symmetry allowed, using the structural data of SiC. The rhombohedral group R3m
(path number 1) is described in the hexagonal basis, while the unique axis for the monoclinic space
group P21 (path number 6) is along b. An additional path (path number 7) with k-index = 4 is also
included (see text).

No. H ZH i Transformation matrices (P , p)

1 (160) R3m 3
4 − 1

2 a + 1
2 b,− 1

2 b + 1
2 c, a + b + c

8 − 1
2 a + 1

2 b,− 1
2 b + 1

2 c, a + b + c

2 (044) Imm2 2
6 − 1

2 a + 1
2 c, 1

2 a + 1
2 c, b

12 1
2 a + 1

2 b, c, 1
2 a − 1

2 b

3 (145) P32 3
24 − 1

2 a + 1
2 b,− 1

2 b + 1
2 c − 1

6 , a + b + c + 1
6

48 1
2 b − 1

2 c, 1
2 a − 1

2 b − 1
6 ,−a − b − c + 1

6

4 (144) P31 3
24 − 1

2 a + 1
2 b − 1

6 ,− 1
2 b + 1

2 c, a + b + c + 1
6

48 1
2 a − 1

2 b − 1
3 , 1

2 b − 1
2 c − 1

6 , a + b + c + 1
2

5 (031) Pmn21 2
12 − 1

2 a + 1
2 c + 1

8 , 1
2 a + 1

2 c, b + 1
8

24 − 1
2 a + 1

2 c − 1
8 , 1

2 a + 1
2 c, b + 3

8

6 (004) P21 2
24 −a − 1

4 , c, 1
2 a + 1

2 b

48 a, b,− 1
2 a + 1

2 c + 1
4

7 (198) P213 4
8 a + 1

2 , b + 1
2 , c

16 a + 1
2 , b + 1

2 , c

defined. The resulting magnitude of the lattice strain and the optimized atomic displacements
are given in table 3, where the end structures are shown in the reference frame of the subgroup.
In each case, the table lists the lattice deformation as estimated by the parameter S, and the
maximum absolute distance �max for the mapping of the atoms with respect to the unit cell of
S1, i.e., the wurtzite structure in our case.

The transition paths with symmetries Cmc21(36) and Pna21(33) are equivalent to those
proposed by Sowa [26, 29]. To the best of our knowledge, the rest of the paths listed in tables 2
and 3 are proposed here for the first time. The two transition paths with monoclinic symmetry
Pc(7) (paths number 6 and 8) are particularly interesting as their structural parameters, S and
�max, are similar to those of the paths proposed by Sowa.

3.2. Zincblende (B3) to NaCl (B1) transformation in SiC

Many II–VI and III–V semiconductors adopt the zincblende structure type as fundamental
crystal state. The zincblende structure crystallizes in the space group F 4̄3m(216) with atoms in
2b positions, ( 1

3 , 2
3 , 0) and ( 1

3 , 2
3 , 3

8 ). The zincblende to NaCl transformation at high pressures
has been widely studied in the literature due to the number of materials with technological
interest which undergo such transition. A well-known representative is SiC, a widely used
material of practical importance in electronic devices, abrasives and refractants.

The first transition path proposed in the literature is based on an intermediate state with
symmetry R3m(160) [32]. An alternative transition path with symmetry P213(198), was
considered as clearly unfavourable [32]. Catti [2, 33, 27], based on LCAO-DFT ab initio
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Table 5. Atomic coordinates, atomic mappings, lattice strain S and maximum distance �max of
the maximal symmetry transition paths for the zincblende (B3) to NaCl (B1) transformation in SiC,
for a maximum k-index equal to 3, maximum lattice strain Stol = 0.2 and maximum displacement
�tol = 2 Å. The internal degrees of freedom are written in bold.

No. H S �max (Å) AT WP Coord. in S1 Coord. in S2

1 (160) R3m 0.0406 1.7208
Si 3a 0 0 0 0 0 0

C 3a 0 0 1
4 0 0 1

2

2 (044) Imm2 0.2335 0.9935
Si 2a 0 0 0 0 0 0

C 2b 0 1
2

1
4 0 1

2 0

3 (145) P32 0.0406 1.0983
Si 3a 0 2

3 0 1
3 0 0

C 3a 0 2
3

1
4 0 1

3
1
6

4 (144) P31 0.0406 1.0983
Si 3a 2

3
2
3 0 2

3 0 0

C 3a 2
3

2
3

1
4

1
3

1
3

1
6

5 (031) Pmn21 0.0406 1.4050
Si 2a 0 3

4 0 1
2

3
4 0

C 2a 1
2

3
4

3
4

1
2

3
4

1
2

6 (004) P21 0.0406 1.4050
Si 2a 3

4 0 0 3
4 0 1

2

C 2a 3
4

1
4

1
2

3
4

1
2

1
2

7 (198) P213 0.0406 1.7208
Si 4a 0 0 0 0 0 0

C 4a 1
4

1
4

1
4

1
2

1
2

1
2

calculations, proposed an alternative orthorhombic mechanism of Imm2(44) symmetry that
appeared to be energetically more favourable than the rhombohedral one, in the case of SiC
and ZnS. The same orthorhombic mechanism was confirmed by Sowa [34] who later proposed
a third one [35] based on a trigonal intermediate symmetry P32(145). Recently, Stokes
and Hatch [11] determined systematically the transition paths for the zincblende to NaCl
transformation in SiC obtaining a set of eight mechanisms with an enthalpy barrier of a similar
order of magnitude. Apart from the previously proposed mechanisms, the authors added new
paths with monoclinic and triclinic symmetries Cc(9) and P1(1).

The maximal symmetry transition paths for the zincblende (B3) to NaCl (B1)
transformation are listed in tables 4, and 5, for a maximum k-index equal to 3. The number of
paths is not reduced after the application of the structural conditions for the data of SiC with
the tolerance values of lattice strain Stol = 0.2, and maximum displacements �tol = 2 Å. The
lattice parameters are a = 3.974 Å, for the zincblende structure, and a = 3.684 Å for the NaCl
structure type [36]. A set of six maximal symmetry transition paths have been obtained. We
have added another well known path (case 7) that results when k-index is increased to 4. The
information contained in the tables is analogous to the data presented in the tables 2 and 3 and
for the wurtzite to NaCl case.

The first path of the list with R3m(160) symmetry corresponds to that proposed by
Blanco [32], the second one with Imm2(44) symmetry corresponds to Catti’s solution [2] and
the third path, with symmetry P32(145), to the mechanism studied by Sowa [35]. The fourth
path involves an intermediate subgroup P31(144), physically equivalent to P32(145), with the
same S and �max parameters. With a maximum k-index equal to 4, the proposed P213(198)

is also obtained. Stokes and Hatch [11] obtained the maximal symmetry transition paths 1, 2,
3 and 7 listed in table 5. They proposed, however, additional ones: (i) one with intermediate
symmetry Cc(9) and indices 24 and 48, (ii) two with Cc(9) symmetry and indices 48 and 96,
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Table 6. Maximal symmetry common subgroups for the NaCl (B1) to CsCl (B2) transformation
for a k-index equal to 2. The maximal common subgroups, their corresponding indices and
transformation matrices are specified. The transformation matrices have been optimized, when
symmetry allowed, using the structural data of NaCl. The rhombohedral space group R3̄m (case
1) is described with respect to the hexagonal basis. In the monoclinic cases, the monoclinic axis is
along b.

No. H ZH i Transformation matrices (P , p)

1 (166) R3̄m 3
4 −a + b,−b − c,−a − b + c
4 − 1

2 a + 1
2 b,− 1

2 b + 1
2 c, a + b + c

2 (059) Pmmn 2
12 −a + c, a + c, b + 1

2
12 1

2 a + 1
2 b + 1

4 , c, 1
2 a − 1

2 b + 1
4

3 (036) Cmc21 4
24 −a + c, a + c, 2b
24 −a,−b − 1

4 , c

4 (031) Pmn21 2
24 −a + b, c, a + b
24 − 1

2 a + 1
2 b, c, 1

2 a + 1
2 b + 1

4

5 (008) Cm 2
24 −a + c, a + c, b
24 a, c,− 1

2 a − 1
2 b

6 (007) Pc 2
48 −2a + b, c, 2a
48 −b + 1

8 , 1
2 a + 1

2 c,− 1
2 a + b + 1

2 c + 1
8

7 (007) Pc 2
48 a + b, c,−2b
48 − 1

2 a + 1
2 b, c, a + 1

4

8 (005) C2 4
48 2a + 1

2 , 2b,−a + c
48 −a + 1

4 ,−c − 1
4 , a − b

and (iii) two other paths with P1(1) symmetry and indices 96 and 192. The last two cases
have not been considered here because they imply a larger k-index. The first case, Cc(9) with
indices 24 and 48, is obtained as a transition path by our calculations but it is not a maximal
symmetry transition path, being a subgroup of Imm2. It is however of maximal symmetry
in the more extended sense discussed above. The new proposals, Pmn21(31) and P21(4),
obtained here present interesting and competitive values for the strain S and the maximum
atomic displacement �max, when compared with the values corresponding to the previously
proposed mechanisms.

3.3. NaCl (B1) to CsCl (B2) transformation in NaCl

The phase transition between the NaCl (B1) and CsCl (B2) structure types is a classical example
of reconstructive transformation at high pressures. It occurs in numerous alkali halides such as
NaCl, KCl, RbCl, NaBr, and alkaline earth oxides as CaO, SrO, BaO. The inverse transition is
given in CsCl at high temperatures. The caesium chloride structure type crystallizes in space
group Pm3̄m(221) with atoms in positions 1a(0, 0, 0) and 1b( 1

2 , 1
2 , 1

2 ) positions. The transition
is accompanied of a change in the coordination number from 6 to 8. This transition has been
widely studied in the literature and three main mechanisms have been proposed. The first of
them is known as Buerger mechanism [37], and it is based on a rhombohedral intermediate state
R3̄m (166). It consists on a contraction along the cubic direction [111], and a simultaneous
expansion in the perpendicular direction. A different path was proposed by Watanabe et al,
on the basis of the observations of the temperature driven transition in CsCl. This second
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Table 7. Atomic coordinates, atomic mappings and maximum strain S and distance �max of the
maximal symmetry transition paths for the NaCl (B1) to CsCl (B2) transformation in NaCl, for
a maximum k-index equal to 2, maximum lattice strain Stol = 0.5 and maximum displacement
�tol = 2.5 Å. The internal degrees of freedom are written in bold.

No. H S �max (Å) AT. WP Coord. in S1 Coord. in S2

1 (166) R3̄m 0.2845 0
Cl 3b 0 0 1

2 0 0 1
2

Na 3a 0 0 0 0 0 0

2 (059) Pmmn 0.0942 0.7450
Cl 2b 3

4
1
4

1
2

3
4

1
4

3
4

Na 2a 3
4

3
4 0 3

4
3
4

3
4

3 (036) Cmc21 0.0942 1.8249
Cl 4a 0 1

2
1
4 0 3

4
1
2

Na 4a 0 0 0 0 3
4 0

4 (031) Pmn21 0.2845 2.2350
Cl 2a 0 1

2
1
2 0 1

4 0

Na 2a 0 0 0 0 3
4 0

5 (008) Cm 0.2383 1.5
Cl 2a 0 1

2
1
2 0 1

2 0
Na 2a 0 0 0 0 0 0

6 (007) Pc 0.1726 1.6659
Cl 2a 1

2
1
2

3
4

1
2

3
4 0

Na 2a 0 0 0 0 3
4 0

7 (007) Pc 0.3236 2.2350
Cl 2a 1

2
1
2 0 0 1

4 0

Na 2a 0 0 0 0 3
4 0

8 (005) C2 0.4210 1.8249
Cl 4c 1

4
1
4

1
2 0 1

2
1
4

Na 4c 1
4 0 0 0 0 3

4

mechanism is similar to one of the geometrical models suggested by Hyde and O’Keefe [38]
which implies an interplanar movement and anti-parallel displacements of the atoms of the
adjacent NaCl layers (100). A modified Buerger-type path has been presented by Stokes and
Hatch [5, 10], which involves a monoclinic P21/m (11) symmetry for the intermediate state.
Catti [39, 3] has shown that for the P21/m path in CaO, the crystal passes through a metastable
structure of type TlI (B33), with symmetry Cmcm (63) and Z = 4 formula units. On the other
hand, Toledano [7] proposes a two-step mechanism through a B33 structure type, motivated by
the experimental observation of the B33 phase in PbS.

The maximal symmetry transition paths for the NaCl (B1) to CsCl (B2) transformation are
listed in tables 6, and 7, for a maximum k-index equal to 2. The total number of paths is not
reduced after the application of the structural conditions for the data of NaCl (Stol = 0.5 and
�tol = 2.5 Å). The lattice parameters used in the calculation are a = 4.84 Å, for the NaCl
structure type, and a = 2.98 Å for the CsCl structure type according to [5]. Among the eight
paths obtained, both Buerger and Watanabe mechanisms can be easily recognized, being the
first and second in table 7. It is interesting to compare the remaining paths to those obtained
by Stokes and Hatch [5] using a different approach. Apart from the Buerger and Watanabe
paths, their work includes 10 additional paths, and only one of them can be found in our list
(path number 3). This is easily explained by the different criteria applied in our search: two
of the transition paths with symmetry Cc(9) in [5], are excluded here as they do not fulfil the
maximal symmetry criterion, while the remaining ones correspond to higher k-indices. On the
other hand, the reason why paths from 4 to 8 in tables 6 and 7 were not obtained or had been
discarded in [5] is not clear.
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4. Conclusions

We have developed a general systematic procedure for the determination of the possible
transition paths for a phase transition with no group–subgroup relation between their phases,
which has been implemented in a computer program. The method is based on certain symmetry
and structural criteria. It is assumed that a transition path involves a hypothetical intermediate
configuration whose symmetry is given by a single common subgroup of the space groups
of the two stable phases. Additional symmetry constraints follow from the occupied atomic
positions. The introduction of the so-called maximal symmetry transition paths results in a
convenient classification scheme. The applied symmetry conditions have general validity as
they do not depend on the specific structures but just on the structure types of the two end
phases. An evaluation of the plausibility of the transitions paths derived from the symmetry
conditions is achieved by an additional analysis of the lattice strains and atomic displacements
involved in the transition path for a specific typical material. Here, we present the results
obtained for three types of reconstructive phase transitions: wurtzite to rocksalt, zincblende to
rocksalt and rocksalt to caesium chloride. In the three cases, apart from the transition paths that
had been previously proposed, new possible transition paths of maximal symmetry have been
determined, which can be of relevance in the transformations of some specific structures.
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